Capacitors Technology for Power Electronics

Mike Lanagan and L. E. Cross Materials Research Laboratory, Penn State University

NRL Power Electronics Passive Component Workshop, June 10-11 1999

Capacitors Technology for Power Electronics

- Collaborators
 - M-J. Pan and W. Hackenberger, TRS Ceramics Inc.
 - Q. Zhang, R. Anklekar, S. Perini, and T. Shrout, PSU
- Sponsors
 - Office of Naval Research
 - Department of Energy, Office of Advanced Automotive Technology

Outline

- Capacitor technology for power electronics.
- Solid state capacitor development and characterization.
- Design considerations for capacitor arrays.

Capacitor Development for Power Electronics

- Reduce Capacitor Volume
 - reduce reliance on electrolytics
 - nonlinear dielectrics
- Integration and Packaging
 - volume savings
 - minimize connectors
 - decrease inductance
- Decrease Thermal Load
 - minimize switching losses
 - decrease capacitor series resistance (ESR)
- Reduce Cost
 - proportional to reduced volume
 - low cost electrode systems.

Volumetric Efficiency of Solid-State Capacitors

Capacitor Type (500 V)	Capacitance (µF)	Volume (cm ³)
Polypropylene	20	133
MLC (X7R)	22	16
MLC (AFE)/FE	20	(4*)

^{*} Projection based on increasing dielectric constant from 1000 to 4000

High Energy Storage Capacitors

Needs: Future Consumer Markets

Electric Car — AC/DC converters

Trucks — Power switching

Medical — Cardiac defibrillators

Power Distribution/Utility Management

Niche Markets

Lasers

Camera flash units

Explosive detonators

Electric guns

High power lighting ignitors

CDS Research Thrusts:

- * Antiferroelectric (phase switching) materials ~ 12J/cm³
- * High K polymers irradiated PVDF K ~ 50, tanδ
- * High K polymer composites
- * Integrated varistor/capacitors
- * DOE GATE (Graduate Automobile Technology Education) Program

U.S. Patent #5,728,138

1 MW Inverter Capacitors

- Capacitor Energy Requirements
 - $-450 \text{ V}, 900 \text{ A}, 10 \,\mu\text{S}$
 - 4 Joules
- Electrolytic Capacitors
 - $-13,800 \mu F$,
 - 2100 cm³ volume (includes package)
- Antiferroelectric/Ferroelectric Materials
 - $-13,800 \, \mu F, 150 \, cm^3 \, volume$
 - electrodes and packaging add extra volume

Conventional Electrolytic vs. Phase-Switching Capacitors

270 cm³ PbZrO₃ based capacitor*

2100 cm³ electrolytic capacitor

Summary and Conclusions

- Materials Development
 - High-K polymers and AFE/FE.
 - Reliability and packaging.
- Components Development
 - 100 kW inverter test with ORNL.
 - Polymer and MLCC have lower ESR than electrolytic.
 - Determine a figure-of-merit.

Passive Components for Power Electronic Workshop

April 26-27, 2000 at Penn State

- For capacitor manufacturers, system designers, and circuit engineers.
- 20 international capacitor companies will attend.

